

2023/TDC(CBCS)/EVEN/SEM/ CHMHCC-403T/336

TDC (CBCS) Even Semester Exam., 2023

CHEMISTRY

Honours)

(4th Semester)

nerview or ordinal state

Course No.: CHMHCC-403T

(Physical Chemistry—IV)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following questions: $2\times10=20$

- 1. Choose the correct answer:
 - (a) The increase in equivalent conductance of a strong electrolyte with dilution is due to
 - (i) increase in number of ions
 - (ii) increase in ionic mobility of ions

J23/672

(Turn Over)

(2)

- (iii) 100% ionization of electrolyte at normal dilution
- (iv) increase in number of ions and ionic mobility of ions
- (b) For strong electrolytes Λ_m^c increases with dilution because ____ attraction decreases but for weak electrolytes Λ_m^c increases with dilution because ____ increases.
 - (i) interionic, dissociation
 - (ii) intraionic, dissociation
 - (iii) All of the above
 - (iv) None of the above
- With the help of graph, explain why it is not possible to determine the molar conductivity at infinite dilution for a weak electrolyte by extrapolating the concentration-molar concentration curve.
- State and explain Kohlrausch law of independent migration of ions with a suitable example.
- Discuss the factors affecting transport number.
- Define transference number with respect to cation and anion.

J23/672 (Continued)

(3)

- 6. Derive the expression for mobility of an ion.
- Explain the formation of products of electrolysis of aqueous CuSO₄ solution using platinum electrodes showing primary and secondary changes.
- 8. Derive the Nernst equation for a general reaction of the type $aA + bB \rightleftharpoons cC + dD$.
- Write the electrode reaction, net reaction and the cell notation for an electrode reversible with respect to anion.
- 10. Write the relation and explain the terms for (a) free energy change with e.m.f. and (b) enthalpy change with e.m.f.
- What is liquid junction potential? Explain its significance.
- 12. Explain the principle of potentiometric titration with reference to acid-base reaction.
- 13. Explain diamagnetism.
- 14. What is dielectric electrostatics?
- 15. Define paramagnetism with example.

J23/672

(Turn Over)

(4)

Section-B

Answer	MIL	Ser.	OF	the	Mowing	questions:	6×5=30
--------	-----	------	----	-----	--------	------------	--------

16.	(a) Derive the relation between equivalent conductivity and specific conductivity of an electrolyte solution.				
	(2)	Explain Arrhenius theory of electrolytic dissociation.	11/2		
	(2)	The molar conductivities at infinite dilution for barium hydroxide, barium			

dilution for barium hydroxide, barium chloride and ammonium chloride are 457-6, 240-6 and 129-8 ohm⁻¹cm²mol⁻¹ respectively. Calculate the molar conductivity at infinite dilution for ammonium hydroxide.

17. (a) Write the Debye-Hückel-Onsager equation and explain the terms involved.

(b) Explain the following terms: 2

Relaxation effect

(ii) Electrophoretic effect

The conductivity of a solution containing 1 g of anhydrous barium chloride in 200 cm³ of water has been found to be 0.0058 S cm⁻¹. What are the molar conductivity and equivalent conductivity of the solution (atomic weight Ba-137, Cl-35:5)?

J23/672 (Continued)

(5)

18.	(a)	Explain the determination of transference using moving boundary	12.5g
		method.	216
	(b)	Discuss the application of conductance measurement in conductometric	
		titration with a suitable example.	1 1/5
	(0)	The specific conductances of a sparingly	

(c) The specific conductances of a sparingly soluble salt (1; 1) (200 g mol⁻¹) in its saturated aqueous solution at 25 °C and that of water are 1·5×10⁻³ and 1·5×10⁻⁵ ohm dm⁻¹, and ionic conductances for cation and anion are 0·485 and 1·0 ohm⁻¹ dm² mol⁻¹. Find the solubility of salt in g L⁻¹.

 (a) Explain how transference number can be determined by using Hittorf's method.

(b) A solution of AgNO₃ was electrolyzed between Ag electrodes. Before electrolysis, 10 g of the solution contained 0.01788 g of AgNO₃. After the experiment, 20.09 g of the anodic solution contained 0.06227 g AgNO₃. At the same time, 0.009479 g of Cu was deposited in Cu coulometer placed in series. Calculate the transport number of Ag⁺ and NO₃ ions. (Ag = 108, Cu = 63.6).

J23/672 (Turn Over)

31/4

(6)

20.	(a)	Write the electrode reaction and cell notation for an electrode which consists				till 1.078 g of Ag (Ag—107.8 g mol ⁻¹).
1.5		of metal, one of its insoluble salts, another insoluble salt of another metal				(i) How much of e consumed?
	a Afri	having same anion and the solution of any soluble salt having the common cation to the latter salt.	1½			(ii) What was the weig liberated?
	(b)	A current of 4 amp was passed for 1.5 hours through a solution of CuSO ₄ and 3.2 g of Cu was deposited. Calculate		22.	(a)	Derive the following relations $\Delta S = n \left(\frac{\partial E}{\partial T} \right)_P$
		the current efficiency.	21/2		(b)	Derive the expression f
	(c)	Describe the construction of a calomel electrode with a suitable diagram, the half reaction and cell notation.	2			transference which is respect to cation.
			- [- 141	(c)	Calculate the equilibrium the reaction $Zn + Cu^{2+} =$
01	(a)	Explain the electrolytic extraction of	,			Given
21.	(α)	aluminium from alumina by Hall and	21/2			$E_{\rm Zn^{2+}/Zn}^{\circ} = -0.76 \rm V; E_{\rm C}^{\circ}$
		Heroult's process.	272			•
	(b)	Explain reversible cell with a suitable example.	1	23.	(a)	Derive an expression udetermine the pH of
	(c)	Two electrolytic cells containing AgNO ₃ solution and dil. H ₂ SO ₄ solution were			(b)	solution by using a hydro Derive the EMF ex
		connected in series. A current of			(2)	a concentration cell v

J23/672

(Continued)

2.5 amp was passed through them

(7)

till 1.078 g of Ag
(Ag—107.8 g mol⁻¹) was deposited

- electricity was
- ght of O₂ gas 21/2
- tion:
 - for EMF of an n cell without reversible with
 - m constant for = $Zn^{2+} + Cu$.

$$E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = -0.76 \text{ V}; \ E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = 0.34 \text{ V}$$

21/2

11/2

- using EMF to an unknown gen electrode. 21/2
 - xpression for a concentration cell with transport 31/2 taking a suitable example.

J23/672

(Turn Over)

(8)

24.	(a)	Deduce Clausius-Mösotti equation.	3
	(b)	Explain the following terms:	3
		(i) Induced polarization	
	시시다	(ii) Orientation polarization	
25.	(a)	Derive Lorentz-Lorenz equation.	2
	(b)	Explain how dipole moment can be measured using temperature method.	2
	(c)	What is magnetic susceptibility and how can it be measured?	2
	*		