

2023/TDC(CBCS)/EVEN/SEM/ CHMHCC-201T/331

TDC (CBCS) Even Semester Exam., 2023

CHEMISTRY (Honours)

(2nd Semester)

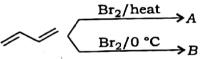
Course No.: CHMHCC-201T

(Organic Chemistry—I)

Full Marks: 50 Pass Marks: 20

Time: 3 hours

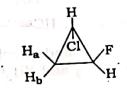
The figures in the margin indicate full marks for the questions

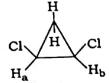

SECTION—A

Answer any ten questions: 2×10=20

- 1. Draw the orbital picture of $CH_3CH=C=0$.
- 2. Write the canonical forms of the following carbocation and indicate with reason, the most contributing canonical form:

(Turn Over)


- 3. Between sodium chloride and sodium bromide in dimethyl sulfoxide (DMSO) solution, Cl⁻ ion behaves as a better nucleophile than Br⁻ ion. Explain.
- 4. Carry out the synthesis of using
 Wurtz-Fittig reaction. Comment on the choice of the starting materials.
- 5. Identify A and B for the following reactions:



- 6. Give the major products of the reaction of 1-methylcyclohexene with the following reagents separately: 1+1=2
 - (a) HBr
 - (b) HBr/Peroxide
- 7. Arrange the following species according to their stability. Give reason of your choice:

 1+1=2
 - (a) _____
 - (b) ____
 - (c) \(\sum_{\text{\tin}}\text{\tin}\text{\teint{\text{\tinit}\\ \text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texitile}}\text{\text{\texitile}}\text{\text{\texi}\text{\texittt{\text{\texi}\text{\texi}\text{\texitit}}\\ \tittt{\texitile}\text{\text{\texit

- 8. Although all C—C bonds are equal length, C_1 — C_2 bond length in naphthalene is 1.365 Å. While for C_2 — C_3 , it is 1.404 Å. How do you account for this?
- 9. What would be the product composition if an equimolar mixture of toluene and chlorobenzene is treated with 1 molar proportion of bromine in presence of iron powder? Predict with plausible reaction mechanism involved.
- 10. Give examples which corroborate the following facts:
 - (a) A meso compound having three chiral centres
 - (b) A chiral molecule that cannot be resolved
- 11. Draw the Fischer projection formula of (2S, 3R)-3-chloro-butan-2-ol and convert it into Newman projection formula (any conformer).
- 12. Mention whether ligands H_a and H_b in each of the following compounds are homotopic/enantiotopic or diastereotopic: 1+1=2

- 13. Indicate the preferred conformation of *trans*-1,3-di-tert-butyl cyclohexane with proper reasons.
- **14.** Discuss the symmetry and optical activities of *cis* as well as *trans*-1,2-dimethylcyclohexane
- 15. Equal amounts of (a, a) and (e, e) conformers of trans-1,2-dibromocyclohexane exist in non-polar solvents but the (e, e) conformation prevails in polar solvent. Explain.

SECTION-B

Answer any five questions:

6×5=30

- 16. (a) Tertiary butyl alcohol is miscible in water in all proportions but 1-butanol is partially miscible. Account for the observation.
 - (b) Comment on the relative stabilities of the following carbocations:

$$H_3C$$
 \oplus
 CH_3
 CH_3
 CH_3
 CH_3

- (c) Compare and explain the dipole moments of the following compounds: CH₃—CH₂—Cl, H₂C=CH—Cl, HC≡C—Cl
- 17. (a) Compare the basicities and nucleophilicities of NH₃, NH₂NH₂ and NH₂OH. Give reasons.

(b) Explain which C—N bond, a or b has a shorter bond length in the following compound:

nd:
$$O_2N \longrightarrow A NO_2$$

$$O_2N \longrightarrow A NO_2$$

$$O_2N \longrightarrow A NO_2$$

(c) Write IUPAC names of the following compounds:

O 1+1=2

18. (a) Give the structures of all possible alkenes that could form in the following reaction. Indicate the major product and explain its formation:

$$\begin{array}{c} \xrightarrow{\text{heat}} \\ C_2H_5 \\ H_3C \\ NMe_3OH \end{array}$$

(b) Indicate suitable reagents to carry out the following conversions (show the intermediate compounds and mechanisms):

Me 1½+1½=3

J23/537

(Turn Over)

11/2

(Continued)

2

(Continued)

(a) Write the structure of product(s) of the following reaction and comment on the relative amount (%) of the product(s). 1+1=2

(b) Write down the products of the following reactions with plausible mechanisms: 2+2=4

(ii)
$$H_3C$$
— CH_2 — C = CH $\xrightarrow{H_2SO_4/Hg^{2+}}$?

- 20. (a) Explain why aniline is more reactive than acetanilide in electrophilic substitution.
 - (b) Predict the products and outline the mechanisms for each of the following reactions: 2+2=4

(i)
$$+ H_3C - CH_2 - CI \xrightarrow{Anhydrous AlCl_3}$$
?

- 21. (a) Provide Haworth synthesis of anthracene.
 - (b) Provide the synthesis of the following compounds. You can use any reagent and solvent for the purpose: 1½+1½=3

22. (a) Assign R/S and E/Z configurations of the following compounds: 1×3=3

(ii)
$$H_3C$$
 $C=C=C$ C_2H_5

(iii)
$$C_2H_5$$
 $C=C$ CH_2 $C=C$ CH_2NH_2

(b) Draw the Fischer projection of a mesoisomer of H₃C(CHOH)₃CH₃ and point out the stereogenic and achirotopic centre(s), if any, in it. Explain.

(Turn Over)

2

r)

J23/**5**

(8)

23.	(a)	What is meant by enantiomeric excess (ee)? The pure (+) enantiomer of a compound shows a specific rotation of +80°. Calculate the percentage of the (-) enantiomer of the same compound in a partially resolved sample showing a specific rotation of -20°. 1+2=3
•	(b)	Write all possible stereoisomers of the following compound and comment on their optical activity: 3 H ₃ C—CH=CH—CH(CH ₃)—CH=CH—CH ₃
24. 	(a)	With appropriate conformations, delineate the preferred pathway for chair twist boat interconversion of cyclohexane. Which symmetry element is retained along the pathway? Discuss. 3
	(b)	Draw all possible conformations of 1,3-dihydroxy cyclohexanes. Which conformation is most stable one? Which one is optically active?
25.	(a)	What is Sachse-Mohr theory? Explain. 21/2
	(b)	Applying conformational analysis, explain the observation that one of the diastereomers of 4-hydroxycyclohexane-carboxylic acid undergoes facile lactonization on brief heating.
	(c)	Draw boat conformation of cyclohexane in Newman Projection.
		the spaid of ** ** In (Stort crace