

141 Mar 2 34

2019/TDC/EVEN/CHMHC-201T/069

TDC (CBCS) Even Semester Exam., 2019

CHEMISTRY

(2nd Semester)

Course No.: CHMHCC-201T

(Organic Chemistry—I)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT-1

1. (a) Write the IUPAC name of the following compounds: 1×2=2

(b) Explain why CH_4 is tetrahedral but C_2H_4 and $H-C \equiv C-H$ are planer.

2

J9/2191

(Turn Over)

11/2

3

(c) Arrange the following amines in terms of increasing base strength. Justify your answer:

Wer:

NH2

NH2

Me

NMc2

Mc

NO2

(d) The following compound has two isomers, one isomer has dipole moment 0D and other has a dipole moment 2.95D. Propose structures for the two isomers that are consistent with these data and explain why:

CICH=CHCI

- (e) Give the products of the following reactions—
- (i) under condition that favour an $S_N 2$
 - (ii) under condition that favour an $S_N 1$ reaction: 1+1=2

 $H_3CCH=CHCH_2Br + CH_3O \xrightarrow{CH_3OH} ?$

2. (a) Give the hybridization of the central atom of the following species and draw the shape of these species:

:CH₂(s), +CH₃, -CH₃

(Continued)

(3)

(b) Arrange the following carbanion in terms of increasing stability:

Neopentyl, Benzyl, Phenyl

(c) Which of the following indicated bonds have greater bond strength and why? 1×2=2

(ii) H_3C C H_3 or CH_3 — CH_2 C H_3

(d) Draw curved arrows to show the flow of electrons responsible for the conversion of the following reactants into the product:

(i)
$$\overset{\Theta}{O}H + H_2C - CH_3 \longrightarrow$$
Br $H_2O + H_2C - CH_2 + Br^-$

(ii)
$$Br + H_2C = CH_2 \longrightarrow H_2C - \dot{C}H_2$$

(e) Give the configuration of the following reaction:

$$CH_2CH_3$$
 CH_2CH_3
 $CH_3CH_2CH_2O \longrightarrow Product$
 $CH_3CH_3CH_2CH_3O \longrightarrow Product$
 $CH_3CH_3CH_3CH_3CH_3O \longrightarrow Product$

(f) Which of the following is a better base or better nucleophile and why?

OH or H2O

J9/2191

(Turn Over)

1

2

J9/2191

(4)

sprint at resented unit 28 mit organica (i)

3. (a) Provide the major products of the following reactions: 1×4=4

(i) Br
$$\longrightarrow$$
I + 2Na \longrightarrow A

(ii)
$$CH = CH_2 \xrightarrow{H_2} B$$

(iii)
$$\bigcirc$$
 Br + Na + CH₃I \longrightarrow C

(iv)
$$CH_3-CH_2-C = C-CH_3 \xrightarrow{H_2} D$$
Lindlar's catalyst

(b) Which alkyl halide would you expect to be more reactive in an E2 reaction and why?

1½×2=3

(i)
$$H_3C$$
— CH — CH — C_2H_5 or CH_3 — CH_3 — CH_3 — CH_4 — CH_2 — CH_4 — CH_5 — CH_5 — CH_2 — CH_4 — CH_5 — CH

J9/2191

(Continued)

(5)

with appropriate reagent/reaction condition(s) and provide mechanism of the reactions:

$$HC=CH \longrightarrow CH_3CH_2CH_2$$
—C—H

4. (a) Complete the following reactions and provide plausible mechanism: $2 \times 2 = 4$

(i)
$$A + HBr \longrightarrow \bigcirc CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

(ii)
$$CH_3 \xrightarrow{1) O_3} B$$

(b) Propose a mechanism for the following reaction:

(c) If 2-fluoropentane were to undergo E1 reaction, would you expect the major product to be one predicted by Zaitsev's rule? Explain.

J9**/2191**

(Turn Over)

3

11/2

(6)

(d) Provide the product(s) of the following treations:

(i)
$$+ H_2C$$
 CO_2Me OEt CO_2Me

(ii)
$$H_2C=CH-CH=CH_2$$

$$+ H_3C-C-C=C-COCH_3 \xrightarrow{\Delta} D$$
(iii) $H_3C-C=CH-CH_3 \xrightarrow{O_3} E+F$

Unit-3

- 5. (a) State Hückel's rule of aromaticity.
 - (b) Which ion in each of the following pairs is more stable and why? $(\frac{1}{2}+1)\times 2=3$

(c) Predict the product of the following reaction and provide mechanism:

$$+ Br_2 \xrightarrow{FeBr_3} Product$$

Why is hydrated FeBr₃ inactive as a Lewis acid catalyst? 2+1=3

J9/2191

(Continued)

11/2

(7)

- (d) Describe synthesis of anthracene from benzene.
- 6. (a) How the following compound could be prepared from benzene? Provide the mechanism of the following reaction:

- (b) When phenol is treated with Br₂, a mixture of monobromo, dibromo and tribromo phenol is obtained. Design a synthesis that would convert phenol primarily to ortho-bromo phenol.
- (c) Starting from benzene, explain how you can synthesize 2-ethyl-naphthalene.
- (d) Prove chemically that naphthalene contains two benzene ring fused in *ortho*position.
- (e) Which of the following compounds has greater dipole moment and why? ½+1=1½

J9/2191

(Turn Over)

21/2

2

2

2

(8)

gent Describe syn - TINUt out racens from

- 7. (a) Draw Fischer projection of the following compound(s): 1×2=2
 - (i) (2S, 3R)-3-chloro-2-pentanol
 - (ii) (S)-3-chloro-1-pentanol
 - (b) Write whether H_a , H_b hydrogens in each of the following compounds are homotropic, enantiotropic or diastereotropic: $\frac{1}{2} \times 4 =$

(i)
$$H$$
 H_a

(ii) H_b
 H_b
 H_b

- (c) Discuss with an example, the resolution method through the formation of diastereomers.
- (d) Write the structure of meso-tartaric acid in Newman projection and Fischer projection. Show that it contains an S_2 axis. 1+1+1=3

J9/2191

A'S

(Continued)

3

((9)

8. (a) Give the stereochemical relationship between the pair of compounds: 1×3=3

- (b) Define optical rotation and specific rotation. 1+1=2
- (c) Convert the following perspective formula to Fischer projection: 1×2=2

J9/2191

(Turn Over)

(10)

(d) Draw projections of the following compounds to show the presence of geometric cis-trans isomers and optical isomers:

UNIT-5

- 9. (a) Explain with example, Baeyer strain theory. $2\frac{1}{2}$
 - (b) Explain why, in case of cyclohexane, chair conformer is more stable than boat conformer.
 - (c) Draw most stable conformation of the following compounds: 1×3=3
 - (i) cis-1-tert-butyl-4-methyl cyclohexane
 - (ii) Butane-2,3-di-ol (in Newman projection)
 - (iii) cis-cyclohexane-1,3-diol
 - (d) Explain why in 1-methyl-1-phenyl cyclohexane the conformer with axial phenyl and equatorial methyl is more stable than other conformer.

(Continued)

2

(11)

- 10. (a) Draw the most stable conformer of cyclopentane. Explain why planar conformation is not stable. 1+1½=2½
 - (b) Why does cyclobutane have less ring strain than cyclopropane? 1½
 - (c) Draw Newman projections of various conformations of *n*-butane and arrange them according to their decreasing stability. Also draw the potential energy diagram (energy vs. torsion angle) of *n*-butane.

 1+2½=3½
 - (d) Draw two conformers of 1,2-cis-dimethyl cyclohexane. State which one is more stable and why.

 1+1½=2½

J9-340/2191 2019/TDC/EVEN/CHMHC-201T/069

/2191