2020/TDC (CBCS)/ODD/SEM/ CHMHCC-102T/286

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

to what is the law of equipartition of

CHEMISTRY OF CHEMISTRY

What is the effect of temperature and

moling (1st Semester)

Course No.: CHMHCC-102T

(States of Matter and Ionic Equilibrium)

Full Marks: 50
Pass Marks: 20

Time: 3 hours d bas n

The figures in the margin indicate full marks for the questions

WOH STORE TO SECTION—A DESIGNATION OF

- 1. Answer any ten of the following questions: $2 \times 10 = 20$
 - (a) Write two postulates of kinetic molecular theory of gases.
 - (b) Calculate the various degrees of freedom for the following:
 - (i) CO₂

constants

(ii) H₂O

- \M88\ddo\(8080(21) ORGITEOL-DORMERO
 - (c) What is the law of equipartition of (c) what conserved the (SOHO) our held in March, 2021
 - (d) What is the effect of temperature and pressure on the coefficient of viscosity?
 - Write the Berthelot equation and explain the terms.
 - compressibility factor? What Name the gases which show positive deviations at all pressures.
 - (g) Write the van der Waals' constants a and b in terms of critical constants.
 - (h) Draw the PV issotherm curve for CO2 molecule.
 - What is surface tension of a liquid? How does surface tension of a liquid vary with temperature?
 - (i) Write in brief about the structure of liquid.
 - (k) Explain the term 'cybotactic group'.
 - What is detergent? Give two examples.

- (m) What is the difference between and symmetry element symmetry ! operation?
- Define liquid crystal. Give two examples. (n)
- Write the Bragg's equation and explain the terms.
- Explain the law of constancy interfacial angle.
- (q) Aqueous solution of Na₂CO₃ is alkaline in nature. Explain.
- Define strong and weak electrolytes with suitable examples.
- the following for reason Give acid dissociation constant order for polyprotic acid:

$$K_{a_1} > K_{a_2} > K_{a_3}$$

- Define the following terms
 - (i) Buffer capacity
 - (ii) Buffer range

SECTION-B

Answer any five questions

2. (a) Explain Maxwell-Boltzmann distribution law of molecular velocities with an appropriate graph. 2+1=3

10-21/176

[Turn Over]

10-21/176

(Continued)

3

2

2

2

2

2

2

(h)	Calculate the mean free path of oxy	gen
(<i>U</i>).	gas at 28 °C and I aum press	ure.
	Collision diameter of the gas molec	ule,
egic	$_{\rm H}\sigma=3.72~{\rm \AA}$. O decay to Lupil Suite	H
10010	Menter the Branges equation and exp	
(a)	What is collision frequency? Write	the
	mathematical expression and exp	lain

- 3. (a) What is collision frequency? Write the mathematical expression and explain the terms involved.
 - (b) Write the factors affecting collision frequency.
 - (c) Calculate the total energy in joules associated with SO₂.
- 4. (a) One mole of CO₂ was found to occupy a volume of 1.32 L at 48 °C and at a pressure of 16.40 atmosphere. Calculate the pressure that would have been expected from (i) ideal gas equation and (ii) van der Waals' equation.
 - (b) Derive the relation $P_c V_c = \frac{3}{8} R T_c$.
 - (c) Explain the terms 'critical temperature' and 'critical pressure'.

5. Comment on the following statements: 2×3=6

- (a) Molecules attract one another and causes a gas to deviate from ideal behaviour.
- (b) Actual volume occupied by molecules is not negligible to cause a gas to deviate from ideal behaviour.
- (c) The molecular attraction between the gas molecules is high at low temperature.
- 6. (a) Explain the mechanism of cleansing action of detergent.
 - (b) What is radial distribution function?
 - (c) Mention the different physical properties of a liquid.
- 7. (a) Describe the process of determination of surface tension of a liquid by stalagmometer.
 - (b) At 25 °C the surface tension of a liquid is 18·5 dynes/cm. The densities of the liquid and its vapours at the same temperature are 0·9256 gm/mL and 0·015 gm/mL. If the radius of the capillary tube is 0·012 cm, what would be the height of the liquid in the capillary, angle of contact being zero?

10-21/176 (Continued)

10-21/176

(Turn Over)

3

1

2

3

8.	(a) Explain the following with state of 1½×2=3 (i) Axis of symmetry (ii) Centre of inversion	
	(b) Mention the characteristic features of Schottky and Frenkel defects. 1½×2=3	
9.	(a) Define the following with examples: (i) Glasses (ii) Glasses	
	(ii) Liquid crystal grieuse to maintain and midged (a) to (b) Deduce the Bragg's equation with reference to X-ray diffraction.	11日間には10日本の
0.	(a) Calculate the pH obtained by mixing equal volume of $0.015 N \text{ NH}_4\text{OH}$ and $0.15 N \text{ NH}_4\text{NO}_3$ solution. (K_b for $NH_4\text{OH} = 1.8 \times 10^{-5}$)	
	(b) Derive the expression for the hydrolysis constant, degree of hydrolysis and pH for hydrolysis of a salt of weak acid and strong base.	3
	(a) The solubility product of magnesium hydroxide at 25 °C is 1.4×10^{-11} . Calculate the solubility of magnesium hydroxide in g/L.	2

10-21/176

Explain an acid-base titration curve between a strong acid versus strong base by pH metric titration with reference to (i) pH value against volume of base added and (ii) differential curve for the same.

2020/TDC (CBCS)/ODD/SEM/ CHMHCC-102T/286

10-21-450/176

(Continued)