

2021/TDC/CBCS/ODD/ CHMHCC-102T/286

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

CHEMISTRY DIVOS at Jack W

(1st Semester)

Course No.: CHMHCC-102T

States of Matter and Ionic Equilibrium)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following as directed:

2×10=20

- 1. Write the two faulty postulates of kinetic theory of gases.
- 2. Calculate the various degrees of freedom for the following:

 1×2=2
 - (a) H_2
 - (b) C_2H_2

22J**/593**

(Turn Over)

- 3. Calculate the most probable velocity of nitrogen molecule at 30 °C.
- What is Boyle's temperature? State the law of corresponding states.
- 5. Write the Berthelot equation and explain the terms involved.
- 6. Define compressibility factor in terms of volume.
- 7. How does intermolecular force affect vapour pressure and surface tension?
- 8. Explain the term 'radial distribution function'.
- 9. The boiling point of liquid increases with increase in pressure. Explain.
- 10. Frenkel defect is a combination of _____ defect and ____ defect. 1+1=2 (Fill in the blanks)
- **11.** Explain the term 'centre of inversion' with a suitable example.

of mohors in the

(3)

- 12. Calculate the (hkl) planes for the following intercepts along crystal axes:
 - (a) (2a, 3b, c)
 - (b) (2a, -3b, -3c)
- 13. Calculate the pH of a 10^{-9} M HCl solution.
- 14. Aqueous solution of NH₄NO₃ is acidic or alkaline. Justify.
- **15.** Write the factors affecting the degree of ionization.

SECTION—B

Answer any five questions of the following:

6×5=30

- 16. (a) Derive the kinetic gas equation.
 - (b) Explain graphically how Maxwell's distribution of velocities vary with change in temperature.
 - (c) Explain the term 'mean free path'.
- 17. (a) Calculate the kinetic energy of (i) 4 gm and (ii) 4 mol of CH₄ at 27 °C. 1½+1½=3

22J/**593**

(Turn Over)

22J/593

(Continued)

3

3

3

3

3

(4)

b) Calculate the temperature of the gas if it obeys van der Waals' equation from the following data:

A flask of 2.5 L contains 10 moles of a gas under 50 atmosphere.

(a = 5.46 atm L² mol⁻¹ and

b = 0.031 L mol⁻¹)

- 18. (a) Deduce the relationship between the critical constants and van der Waals' constants.
 - (b) Explain with a proper diagram of the Andrews isotherm of CO₂.
- pressure, reduced Calculate the **19.** (a) volume reduced and reduced temperature of one mol of methane gas confined to a volume of 5 dm³ under a pressure of 5 atm. Also calculate the temperature of the gas. critical constants of methane $V_c = 0.0988 \,\mathrm{dm}^3 \,\mathrm{mol}\,\mathrm{L}^{-1},\, P_c = 54.6 \,\mathrm{atm},$ $T_c = 190.2 \text{ K}.$
 - (b) Show that for a van der Waals' gas, the Boyle temperature is $T_{\rm B} = \frac{a}{R_{\rm h}}$.

(Continued)

(5)

- 20. (a) Illustrate the phenomena of cleansing action of detergent with a suitable diagram.
 - (b) Describe the process of determination of viscosity of a liquid by Ostwald's viscometer.

at Explain the liketon, interface the dela

- 21. (a) The time of flow of water through Ostwald viscometer is 1.48 minutes. For the same volume of a liquid of density 0.792 g/mL, it is 2.42 minutes. Find the viscosity of the liquid relative to that of water and also absolute viscosity at 20 °C. Density and viscosity of water at 20 °C are 0.995 g/mL and 10.02 millipoise respectively.
 - (b) Explain the variation of vapour pressure, surface tension and coefficient of viscosity with temperature.
- 22. (a) Mention the differences between symmetry element and symmetry operation.
 - (b) Explain the various non-Stoichiometric defects with a suitable example. 4

22J**/593**

(Turn Over)

3

3

3

3

2

22J**/593**

(6)

23.	(a) Explain the following with examples:	
	steletim is they were talk in minus 1½×2	=3
	(i) F-centre	
	(ii) Plane of symmetry	
3.	(b) Write a short note on 'Bravais lattices'.	3
24.	(a) Explain the factors affecting the degree of ionization.	2
	(b) Deduce the Henderson's equation for a basic buffer.	2
	(c) Explain the Ostwald's theory of indicator with reference to acid-base titration.	2
	color in vinewaci hus giriros de la la	
25.	(a) Calculate the hydrolysis constant, degree of hydrolysis and H^+ ion concentration in $0.1 N NH_4Cl$ solution. $[K_b]$ for $NH_4OH = 1.8 \times 10^{-5}$ and	
	$K_{\rm w} = 10^{-14}$].	3
	(b) Explain the following: 1½×2= (i) Common ion effect	=3
	(ii) Buffer capacity	

* * *