2019/TDC/ODD/SEM/CHMHCC-102T/131

TDC (CBCS) Odd Semester Exam., 2019

CHEMISTRY

is proportional to the square root of absolute

(1st Semester)

Course No.: CHMHCC-102T

(States of Matter and Ionic Equilibrium)

Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks: 20)

Answer ten questions, taking two from each Unit

CAPTURE TO GETTE STATE TO STAT

- 1. Show that the mean free path of a gas at constant volume is directly proportional to temperature.
- **2.** Calculate various degrees of freedom for the following:
 - (a) HCl
 - (b) C_6H_6

20J/1164

(Turn Over)

2

3. Prove that the molecular velocity of any gas is proportional to the square root of absolute temperature.	11. Explain the term 'F-centre'. 12. What do you mean by the term 'plane of symmetry'?
UNIT—II 4. Write the dimension and significance of van der Waals' constant a. 2	13. Write the solubility product expression for
5. Calculate the value of critical compressibility factor Z_c .	aluminium sulphide. 2 14. Calculate the pH of 10 ⁻⁹ M HCl solution. 2
6. Write the Dieterici equation and explain the terms.	15. "Aqueous CuSO ₄ solution is acidic or alkaline." Explain the statement.
UNIT—III	sein of 50 ml at 27 % and 50 atm
7. What are cohesion and adhesion forces? 2	several and stantant (Marks: 30)
8. Explain the term 'cybotactic group'. 2	Answer five questions, taking one from each Unit
9. What is viscosity of a liquid? How does viscosity vary with temperature?	16. (a) Deduce the kinetic gas equation.
Calculate various VI TINU of freedom for the	(b) Calculate the temperature at which the root mean square velocity, the average
10. Write the cell parameters for the most unsymmetric unit cell.	velocity and the most probable velocity of oxygen gas are all equal to 1500 ms ⁻¹ .
20J/1164 (Continued)	20J/1164 (Turn Over)
	Region 1

17.	(a)	Find out the number of molecules of an ideal gas per litre at (i) 300 K and 1 atm pressure and (ii) 400 K and 2 atm pressure.	20 20). (a)	Describe the process of determination of a liquid using Ostwald's viscometer.
\$	(b) (c)	What is the effect of temperature and pressure on the coefficient of viscosity? Deduce an expression for mean free	2 ε .ε.ι	(b)	Equal volume of an organic liquid and water gave 55 drops and 25 drops respectively. The densities of liquid
2		path relating to temperature.	3	Am	0.96 g cm ⁻³ . Find the surface tension of organic liquid, if that of water is
<u>\$</u>	(a)	Derive the van der Waals' equation for	3		7·2×10 ⁻² Nm ⁻¹ . 200 (E)
2	(b)	one mole of SO ₂ gas occupies a volume of 350 mL at 27 °C and 50 atm	199	. (a)	What is radial distribution function? How is it used for elucidation of structure of liquid? 2+2=
		pressure. Calculate the compressibility factor of the gas. Comment on the type of deviation shown by the gas from ideal	5	(b)	V -1MU
tin	ti do	behavioura gross adopesup avil to 2+	1=3		
19.	(a)	Show that for a van der Waals' gas, the			(b) Excisio the common ion effect value reference to VI—TIMU or besic radice Co-H(A)
£		Boyle temperature is $T_{\rm B} = \frac{a}{Rb}$.	3 22	(a)	Write the difference between symmetry
	(b)	8	1½	(b)	Explain the following terms:
	(c)	Write the expression for reduced equation of state and explain the terms.	1½		(i) Primitive unit cell (ii) Non-primitive unit cell
		em oosi			
20J	116	4 (Continue	ed) 20	J /11 6	64 (Turn Over

	(c)	What do you mean by stoichiometric defect?	2
		which have a first the terms of the first the	
23.	(a)	Draw the different types of unit cell which are defined as $\alpha = \beta = \gamma = 90^{\circ}$ and	
		a = b = c.	3
	(b)	A second on the second on the second	3
	E F	H ₂ O is in biopi carriero lo	
E		(ii) CO ₂	
		(iii) NH ₃	
		(iv), O2 analysiach falber on half w tra	.1.5
		How is it must be considered	

25. (a) Calculate the pH of a mixture obtained by mixing 30 mL of 0.25 M CH₃COOH and 60 mL of 0.65 M CH₃COONa. $(K_a = 1.2 \times 10^{-3})$

(b) Derive the expression for the hydrolysis constant, degree of hydrolysis and pH for hydrolysis of a salt of strong acid and weak base.

* * *

UNIT-V

What do you oncore by Line

- 24. (a) Mention two limitations of pH scale.
 - (b) Explain the common ion effect with reference to wet test for basic radical in Gr-III(A).
 - (c) 10 mL of 10⁻³ M Na₂SO₄ is mixed with 20 mL of 10⁻⁴ M BaCl₂. Predict whether barium sulphate will precipitate or not if its solubility product is 10⁻⁷.

20J—440**/1164**

2019/TDC/ODD/SEM/ CHMHCC-102T/131

3

3

20J/1164

(Continued)

2

2