

2018/TDC/ODD/CHMC-102T/078

diameter.

TDC (CBCS) Odd Semester Exam., 2018

CHEMISTRY

(1st Semester)

Course No.: CHMHCC-102Thi mon

(States of Matter and Ionic Equilibrium)

Full Marks : 50
Pass Marks : 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks : 20)

Answer ten questions, taking two from each Unit

UNIT—1

- 1. Write two important postulates of kinetic theory of gases.
- Calculate the most probable velocity of oxygen molecule at 27 °C.

(Turn Over)

3. Define collision frequency and collision diameter. UNIT—2 4. What are the causes of deviation of real gas from ideal behaviour? 2 5. What is Boyle's temperature? State the law of corresponding states. 1+1=2 6. Draw isotherms of carbon dioxide at the following temperatures: 1/2×4=2	10. State the law of rational indices. 2 11. What are Bravais lattices? 2 12. Define glass and liquid crystal. 1+1=2 UNIT—5 13. Define pH. Calculate the pH of 100 ml M/50 HCl solution. 1+1=2
(a) 13·1 °C (b) 21·5 °C (c) 31·1 °C (d) 35·5 °C A—XOTTOXIS	 14. Give the theory of acid-base indicators, taking methyl orange as an example. 15. Give two applications of solubility product principle. 2 SECTION—B
7. Define angle of contact for a liquid that (a) wets glass and (b) does not wet glass. 1+1=2 8. What are surface active agents? Give examples.	(Marks: 30) Answer five questions, taking one from each Unit UNIT—1
9. Distinguish between Newtonian and non-Newtonian liquids. 2 J9/1118 (Continued)	16. Give an account of Maxwell's distribution of velocities. Explain graphically how the velocity changes with temperature. 4+2=6J9/1118 (Turn Over)

www.elearninginfo.in (5)

Discuss the principle of equipartition of energy. Calculate the average internal energy of a diatomic molecule at 27 °C using law of equipartition of energy. He Braveis lattice

UNIT-2

- Starting from van der Waals' equation, obtain an expression for critical constants in terms of van der Waals' constants a and b.
 - (b) The critical temperature and critical pressure of chlorine are 146 °C and 93.5 atm respectively. Calculate the values of van der Waals' constants a and b. Also find its critical volume.

2+1=3

3

- Describe virial equation of state for real 19. (a) gases.
 - What is the molar volume of N₂(g) at 500 K and 600 atm according to (i) the perfect gas law and (ii) the virial equation? Given the virial coefficient B of N₂(g) at 500 K is 0.0169 L mol⁻¹. 1+2=3

UNIT-3

Describe drop number method for the determination of surface tension of a liquid using stalagmometer.

J9/1118

(Continued)

4

- (b) Explain the cleansing action of soaps (M) and detergents. The so at 1 80 Bactly seltment. Cive
- Write Poiseuille's equation. Use this 21. (a) equation to determine the relative viscosity of a liquid experimentally. Mention the name of the apparatus used for the purpose. 1+3+1=5
 - Show that 1 Pa.s = 10 poise.

UNIT-4

- Derive Bragg's equation. How can this 22. equation be used to determine the structure of NaCl? 4+2=6
- 23. Differentiate between Weiss and Miller indices. Calculate the Miller indices of crystal planes which cut through the crystal axes at-
 - (2a, 3b, c);
 - (6a, 3b, 3c);
 - (2a, -3b, -3c).

3+3=6

1

UNIT-5

Derive expressions for the hydrolysis constant, degree of hydrolysis and pH for hydrolysis of ammonium nitrate salt.

J9/1118

(Turn Over)

(6)

- (b) Calculate the solubility of BaSO₄ at 298 K in (i) pure water and (ii) 0.05 (M) BaCl₂ solution. Given solubility product of BaSO₄ at 298 K is 1.5×10⁻⁹. 1+2=3
- **25.** (a) Derive Henderson equation for basic buffer solution. What is buffer capacity?

 3+1=4
 - (b) Draw acid-base titration curves for—(i) NaOH vs. HCl titration (conductometric);
 - (ii) CH₃COOH vs. KOH titration (conductometric). 1×2=2

Deffermations between * Weston word i Miller

Indices Carcaly to the William to december of crossed

planes which cut through the crystal sage at-

4+2=6

3 -3 - 6

Dennie expectatorie for the hestrayers