

2023/TDC(CBCS)/EVEN/SEM/ CHMDSC/GE-401T/337

TDC (CBCS) Even Semester Exam., 2023

CHEMISTRY

(4th Semester)

Course No.: CHMDSC/GE-401T

(Transition Metals, Coordination Chemistry, States of Matter and Chemical Kinetics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any fifteen of the following questions:

 $1 \times 15 = 15$

- 1. Write the general electronic configuration of the first transition series.
- 2. Name the only synthetic radioactive element in lanthanoids.
- 3. The +3 oxidation states of lanthanum (Z = 57) and gadolinium (Z = 64) are especially stable. Why?

J23/673 (Turn Over)

2)

- 4. Among Co²⁺ and Ni²⁺, who has lower magnetic moment?
- Give an example of unsymmetrical bidentate ligand.
- 6. Write two drawbacks of valence bond theory.
- 7. State Jahn-Teller theorem.
- 8. Write two postulates of crystal field theory.
- 9. What is Boyle temperature?
- **10.** What is the significance of compressibility factor?
- 11. Write the kinetic gas equation and explain the terms involved.
- **12.** Write the significance of van der Waals' constant, a.
- 13. Define liquid crystal and give example.
- **14.** What is the effect of temperature on surface tension?
- 15. What is vacancy defect?

J23/673

(Continued)

(3)

- 16. Write Bragg's law.
- 17. Give an example of zero-order reaction.
- 18. What is threshold energy?
- 19. What is the unit of rate constant for a second-order reaction?
- 20. What do you mean by instantaneous rate of reaction?

SECTION-B

Answer any five of the following questions:

2×5=10

- 21. Write various features of a Latimer diagram.
- Explain why transition elements act as catalyst.
- 23. Explain ligand isomerism with suitable example.
- Draw different geometrical isomers of [PtClBrPy(NH₃)].
- 25. Define collision number and mean free path.

J23/673

(Turn Over)

J23/673

26. Explain the effect of temperature and

J23/673

(5)

32. (a) What is lanthanide contraction? Give

2

3

(Turn Over)

pressure on coefficient of viscosity of gases.	reason.
27. Write the rules for identification of lattice plane.	(b) Explain how lanthanides are separated by ion-exchange method.
28. Explain F-centre with an example.29. Show that the half-life period of a zero-order reaction is directly proportional to initial concentration.	 (a) Using VBT, explain the formation of [Fe(H₂O)₆]²⁺. Comment on its magnetic character. (b) Give the IUPAC names of the following: 2
30. Explain various factors affecting the rate of a reaction.	(i) $[(NH_3)_5 Cr - OH - Cr(NH_3)_5]Cl_3$ (ii) $[Ni(dmg)_2]$
SECTION—C Answer any five of the following questions: 5×5=25	34. (a) Which of the complex will show strong Jahn-Teller distortion? 2 [Co(en) ₃] ²⁺ and [Fe(CN) ₆] ⁴⁻
 (a) Write the difference between lanthanoids and actinoids. (b) Draw Latimer diagram for the following reduction half-reaction and calculate the value of E° for reduction of Cu²⁺ to Cu: 1+2=3 	 (b) Calculate the CFSE for [Co(en)₃]²⁺ and [Fe(CN)₆]⁴⁻. 3 35. (a) Derive the kinetic gas equation in terms of density.
to Cu: $1+2=3$ $Cu^{2+} + e^{\circ} \longrightarrow Cu^{+}, E^{\circ} = 0.15v$	(b) Explain the cause of deviation of real gas from ideal behaviour.

(Continued)

(6)

36.		Draw and explain the Andrews isotherm of CO_2 .	3
		Show that the ratio of most probable velocity, average velocity and root-mean-square velocity is 1:1.128:1.224.	2
37.		Explain in detail different types of symmetry elements of a cube. Also mention the total number of symmetry elements. 2½+½	₂ =3
	(b)	What is the number of Na-atoms and Cl-atoms present in the unit cell of NaCl?	2
38.	(a)	Draw different unit cells for $\alpha = b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$.	2
	(b)	Explain the process of determination of surface using stalagmometer.	3
39.	(a)	For a reaction, $2A+B \rightarrow 3C$, the rate of appearance of C is $1\cdot 3\times 10^{-4}$ mol L^{-1} s ⁻¹ . Calculate the	
		(i) rate of reaction;	
		(ii) rate of disappearance of A.	2
	(b)	Deduce the integrated rate equation for a second-order reaction when both the reactants are same.	3
23/	673	(Continued	d)

(7)

40. (a) The rate constants of a reaction at 500 K and 700 K are 0.02 s^{-1} and 0.07 s⁻¹ respectively. Calculate the value of Ea and A. (b) Explain the criteria of effective collision

reaction rate.

in the light of collision theory of

3

2

2023/TDC(CBCS)/EVEN/SEM/ CHMDSC/GE-401T/337

J23-990/673