2020/TDC(CBCS)/ODD/SEM/ CHMDSC/GE-301T/291

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

Write two limits logs of Meriest distribution

CHEMISTRY

(3rd Semester)

Course No.: CHMDSC/CHMGE-301T

(Physical and Organic Chemistry)

Full Marks: 50
Pass Marks: 20

Smargain Time: 3 hours 1000 to 1000

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any fifteen questions:

1×15=15

- 1. State Raoult's law.
- 2. What is critical solution temperature?
- 3. What is triple point?

(Turn Over)

\Mae\GGG\\8080\|K**2`**026£ DEADSC/GB~8011/291

- 4. Write two limitations of Nernst distribution law.
- 5. How many phases are there in aqueous NaCl solution?
- **6.** Give an example of a minimum boiling azeotrope.
- 7. Write the SI units of equivalent conductivity and molar conductivity.
- 8. What is ionic mobility?
- 9. What do you mean by phase diagram?
- 10. How does conductivity vary with dilution?
- 11. Define standard electrode potential.
- 12. Write the expression relating ΔG and EMF.
- **13.** Name one aldehyde and one ketone which do not show aldol condensation.
- 14. What is iodoform test?
- 15. $CH_3COOH \xrightarrow{NH_3, \Delta}$?

10-21/323

(Continued)

(3)

16. How can you distinguish an aldehyde and a ketone?

17. R-C-Cl
$$\xrightarrow{\text{H}_2/\text{Pd}, \text{BaSO}_4}$$
 ?

- 18. H—CHO + H_2N $NH_2 \longrightarrow ?$
- 19. Give an example of carbylamine test.
- 20. Name the amine with molecular formula C₂H₅N which produces a yellow oily liquid on reacting with HNO₂.
- 21. $CH_3CH_2CONH_2 + Br_2 + KOH \longrightarrow ?$
- 22. Write the IUPAC name of

23. Give an example of electrophilic substitution reaction of aniline.

24.
$$CH_3CH_2-NH_2+R-C-C1 \xrightarrow{NaOH}$$
?

10-21/323

(Turn Over)

(5)

25 .	Give one example each of sugar and ar non-sugar.	33.	The molar conductances of NaOH, NaCl and BaCl ₂ at infinite dilution are 2.481×10^{-2} , 1.265×10^{-2} and	
26.	Write the Haworth structure of β-D-(+) glucopyranose.	£	are 2.481×10^{-2} , 1.265×10^{-2} and 2.8×10^{-2} Sm ² mol ⁻¹ respectively. Calculate Λ_m° Ba (OH) ₂ .	2
	Sketch the zwitterion structure of alanine. What is peptide linkage? Give example.	34.	Explain the nature of aqueous solution of CuSO ₄ .	2
	Give one example each of aldoketose and ketopentose.	35.	Explain with a suitable example, the usefulness of iodoform test in distinguishing two different compounds.	2
30.	What is meant by limiting molar conductivity?	36.	Illustrate Hell-Volhard-Zelinsky with a suitable example.	2
	SECTION—B Answer any five questions	37	Explain Hinsberg test with a suitable example.	2
31.	Find out the number of components in the following: 1×2=2 (i) NaCl—KCl—H ₂ O	38	 Write the reaction for preparation of propylamine from phthalimide by Gabriel phthalimide reaction. 	2
	(ii) $CaCl_2 \cdot 6H_2O - Ca^{2+} - Cl^ H_2O$	39	. Convert arabinose to glucose.	2
32.	Explain graphically the positive and negative deviations of liquid mixtures from ideal behaviour.	40	Write the reaction for preparation of alanine by Gabriel synthesis.	2
10-2	1/323 (Continued)	10	-21/323 (Turn Oi	er)

10-21/323

(Continued)

3

2

1

3

(6)

SECTION—C

Answer any five questions

- Draw and explain the phase diagram of (a) water system.
 - Explain the effect of impurity on critical solution temperature with a suitable example.
- What is Nernst distribution law?
 - Mention two conditions for the validity of Nernst distribution law.
 - Deduce the Nernst distribution law thermodynamically.
- (a) Calculate the e.m.f. from the following 43. cell notation:

$$Mg | Mg^{2+} (0.130) | Ag^{+} (0.0001) | Ag$$

with

$$E_{\text{Mg}^{2+}/\text{Mg}}^{\circ} = -2.37 \text{ V and}$$

$$E_{\text{Ag/Ag}^+}^{\circ} = -0.80 \,\text{V} \qquad 3$$

Explain the term 'transference number'.

The vapour pressure of a 5% aqueous solution of a non-volatile substance at 373 K is 745 mm. Calculate the molecular mass of the solute.

- Explain the term 'solubility product'.
- Write the structures and names of the products for the following: (i) CH₃-CHO+CH₃CH₂-CHO-

(ii)
$$CH_3CHO \xrightarrow{Zn-Hg} ?$$

- What are ylides? Give two examples.
- Illustrate benzoin condensation with an 46. (a) example along with the mechanism.
 - when acetaldehyde What happens reacts with-(i) ethyl alcohol;
 - (ii) ethylene glycol?
- How can you distinguish among 1°, 2° and 3° amine using benzene sulphonyl chloride?
 - aniline undergoes (b) Explain why electrophilic substitution reaction.

10-21/323

(Turn Over)

3

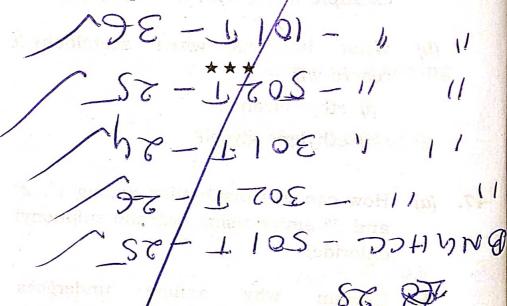
2

3

3

2

3


2

10-21/323

(Continued)

- 48. (a) Explain with a suitable example to illustrate Hofmann versus Saytzeff elimination.
 - (b) Discuss the method of preparation of amine by Hofmann's amonolysis method.
 - 49. (a) Define the term 'mutarotation' with a suitable example.
 - (b) Define essential and non-essential amino acids with two examples for both.
 - **50.** (a) Using Strecker synthesis, how can you prepare glycine and alanine?
 - (b) How are amino acids analyzed by electrophoresis?

10-21-1280/323

2020/TDC(CBCS)/ODD/SEM/ CHMDSC/GE-301T/291 A

2

3