

2021/TDC/CBCS/ODD/ BCACC-102T/016

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

COMPUTER APPLICATION

(1st Semester)

Course No.: BCACC-102T

(Discrete Structures)

Full Marks: 70

Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten questions from the following:

 $2 \times 10 = 20$

- 1. Define conditional and biconditional statements.
- 2. Write the negation of each of the following conjunctions:
 - (a) Paris is in France and London is in England.
 - (b) 2+4=6 and 7<12.

22J/559

(Turn Over)

30012080100T) (825)

- 3. Show that contrapositive and conditional proposition are logically equivalent.
- 4. What is power set? Give example.
- 5. State De Morgan's law.

80A0C-103

- 6. Define equivalence relation with example.
- complemented distributive and 7. Define lattices with example.
- 8. Show that 1 is the only complement of 0.
- 9. What is duality principle? Give example.
- 10. Define isomorphic graph with example.
- 11. Write a short note on Eulerian graph.
- 12. Find the adjacency matrix of the following graph:

22J/559

(Continued)

- 13. Write down the difference between graph and
- 14. Prove that the number of vertices in a binary tree is always odd.
- 15. Define complete binary tree with example.

SECTION—B

Answer any five questions from the following:

Prove that the following argument is

$$P \rightarrow]Q, R \rightarrow Q, R \vdash]P$$

- What is normal form? Define CNF and 1+(1+1)=3
- Find the PDNF and PCNF of

$$(\exists P \to R) \land (Q \leftrightarrow R)$$
 3

17. (a) Show that

$$\alpha = (P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$$
 is tautology.

Show that

$$(P \to Q) \land (R \to Q) \equiv (P \lor R) \to Q$$
 3

22J/559

(Turn Over)

4

3

(4)

(c) Determine the validity of the following argument:

If 7 is less than 4,
then 7 is not a prime number.

7 is not less than 4.

:. 7 is a prime number.

18. (a) Given $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Let R be the following relation from A to B:

 $R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}$

- (i) Determine the matrix of the relation.
- (ii) Draw the arrow diagram of R.
- (iii) Find the inverse relation R^{-1} of R.
- (iv) Determine the domain and range of R. 1+1+1+1=4
- (b) Show that $A (B C) = (A B) \cup (A \cap C)$.
- (c) Given the relation

 $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$

- (i) Is R reflexive or transitive?
- (ii) Is R antisymmetric?
- (iii) Determine R^2 .

1+1+1=3

22J/559

(Continued)

(5)

19. (a) In a group of 50 persons, 30 like tea, 25 like coffee and 16 like both. How many like—

(i) either tea or coffee;

(ii) neither tea nor coffee?

2+2=4

(b) Given f is a function $f: A \rightarrow B$ where $A = \{a, b, c, d\}$ and $B = \{1, 2, 3\}$ with f(a) = 3, f(b) = 2, f(c) = 1 and f(d) = 3. Is the function f an onto function?

2

(c) Convert the following infix to RPN:

 $((A+B)*B) \uparrow (E-F)$

20. (a) In a Boolean algebra B, show that—

(i) (a+b)' = a'*b';

(ii) (a*b)' = a' + b'.

21/2+21/2=5

(b) Let a be any element of a Boolean algebra B. Show that if—

(i) a+x=1 and a*x=0, then x=a';

and in (ii) (a')' = a;

(iii)
$$0' = 1$$
 and $1' = 0$.

2+1+2=5

3

3

21. (a) Draw the Hasse diagram for

(b) Show that every chain is a lattice.

22J**/559**

(Turn Over)

7

3

7

(6)

(c) Show that the lattices given by the following diagrams are not distributive:

- 22. (a) Explain breadth-first search with example.
 - (b) How do you find the minimum spanning tree using Kruskal's algorithm?
- 23. (a) Explain Warshall's algorithm to find all-pair shortest path.
 - (b) Define adjacency list and incidence matrix in a graph with suitable example.
- **24.** (a) Find the DFS spanning tree of the following:

(b) Explain inorder traversal with example.

22J/559

(Continued)

(7)

- **25.** (a) Explain Prim's algorithm with example.
 - (b) Define the following:

 $1 \times 3 = 3$

- (i) Chord
- (ii) Leaf node
- (iii) Circuit

* * *

2021/TDC/CBCS/ODD/ BCACC-102T/016

22J**/559**